Reg. No. : \qquad
Name: \qquad
II Semester B.C.A. Degree (CCSS - 2014 Admn. - Regular)
Examination, May 2015 CORE COURSE 2B02 BCA : Digital Systems

Time: 3 Hours
Max. Marks : 40

SECTION - A

1. One word answer:
a) In digital computer, \qquad is used to represent negative numbers.
b) The output of a NOR gate is high if all inputs are \qquad
c) An octal digit corresponds to \qquad binary digits.
d) ABCD counter has \qquad states.
e) The number of control lines for a 8 to 1 multiplexer is \qquad
f) The Gray code for decimal number 6 is equivalent to \qquad
g) The device which changes from serial data to parallel data is \qquad
h) The excess 3 code of decimal number 26 is \qquad
SECTION - B

Write short notes on any seven of the following questicns.
2. State and prove commutative law of Boolean algebra.
3. Describe X-OR gate with logic diagram and truth table.
4. Simplify the expression $x y z+x y z z^{\prime}+x^{\prime} z$.
5. What are synchronous counters?
6. Convert (110101.101010) to octal and hexadecimal.
7. Define a half adder and full adder.
P.T.O.

M 8855

8. What is a shift register? Can a shift register be used as a counter ?
9. What is a demultiplexer ? Discuss the differences between a demultiplexer and a decoder.
10. What is meant by triggering of flip flop?
11. Explain excess-3 code with examples.
SECTION-C

Answer any four of the following questions.
12. Simplify the Boolean expression $x y+x z+y z$.
13. Distinguish between minterms and maxterms.
14. State and prove Demorgan's laws.
15. Implement a full adder circuit with a decoder and two OR gates.
16. What is a flip-flop? What is the difference between a latch and a flip-flop ? List out the application of flip-flop.
17. Explain the following conversions with suitable examples:
a) Decimal to octal
b) Octal to hexadecimal.

SECTION - D

Write an essay on any two of the following questions.
18. What are universal gates ? Construct a logic circuit using NAND gates only for the expression $x=A \cdot(B+C)$.
19. Simplify using K Map in SOP form. $f(A, B, C, D)=\Sigma(0,2,8,9,10,11,14,15)$.
20. Explain the working of SR flip-flops.
21. Explain with necessary diagram a Mod-10 Shift Counter with encoding.

